Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 628(8006): 122-129, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448590

RESUMEN

Genomic imprinting-the non-equivalence of maternal and paternal genomes-is a critical process that has evolved independently in many plant and mammalian species1,2. According to kinship theory, imprinting is the inevitable consequence of conflictive selective forces acting on differentially expressed parental alleles3,4. Yet, how these epigenetic differences evolve in the first place is poorly understood3,5,6. Here we report the identification and molecular dissection of a parent-of-origin effect on gene expression that might help to clarify this fundamental question. Toxin-antidote elements (TAs) are selfish elements that spread in populations by poisoning non-carrier individuals7-9. In reciprocal crosses between two Caenorhabditis tropicalis wild isolates, we found that the slow-1/grow-1 TA is specifically inactive when paternally inherited. This parent-of-origin effect stems from transcriptional repression of the slow-1 toxin by the PIWI-interacting RNA (piRNA) host defence pathway. The repression requires PIWI Argonaute and SET-32 histone methyltransferase activities and is transgenerationally inherited via small RNAs. Remarkably, when slow-1/grow-1 is maternally inherited, slow-1 repression is halted by a translation-independent role of its maternal mRNA. That is, slow-1 transcripts loaded into eggs-but not SLOW-1 protein-are necessary and sufficient to counteract piRNA-mediated repression. Our findings show that parent-of-origin effects can evolve by co-option of the piRNA pathway and hinder the spread of selfish genes that require sex for their propagation.


Asunto(s)
Caenorhabditis , Impresión Genómica , ARN de Interacción con Piwi , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Femenino , Masculino , Alelos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis/genética , Caenorhabditis/metabolismo , Cruzamientos Genéticos , Padre , Genoma/genética , Impresión Genómica/genética , Organismos Hermafroditas/genética , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , Madres , Oocitos/metabolismo , ARN de Interacción con Piwi/genética , Biosíntesis de Proteínas , Secuencias Repetitivas de Ácidos Nucleicos/genética , ARN Mensajero/genética , Toxinas Biológicas/genética , Transcripción Genética
2.
Dev Cell ; 59(9): 1096-1109.e5, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38518768

RESUMEN

Cell polarity is used to guide asymmetric divisions and create morphologically diverse cells. We find that two oppositely oriented cortical polarity domains present during the asymmetric divisions in the Arabidopsis stomatal lineage are reconfigured into polar domains marking ventral (pore-forming) and outward-facing domains of maturing stomatal guard cells. Proteins that define these opposing polarity domains were used as baits in miniTurboID-based proximity labeling. Among differentially enriched proteins, we find kinases, putative microtubule-interacting proteins, and polar SOSEKIs with their effector ANGUSTIFOLIA. Using AI-facilitated protein structure prediction models, we identify potential protein-protein interaction interfaces among them. Functional and localization analyses of the polarity protein OPL2 and its putative interaction partners suggest a positive interaction with mitotic microtubules and a role in cytokinesis. This combination of proteomics and structural modeling with live-cell imaging provides insights into how polarity is rewired in different cell types and cell-cycle stages.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , División Celular , Polaridad Celular , Estomas de Plantas , Proteómica , Arabidopsis/metabolismo , Arabidopsis/citología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estomas de Plantas/metabolismo , Estomas de Plantas/citología , Proteómica/métodos , Polaridad Celular/fisiología , Microtúbulos/metabolismo , Linaje de la Célula , Citocinesis/fisiología , Proteínas Represoras
3.
Elife ; 112022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36193674

RESUMEN

RNA interference systems depend on the synthesis of small RNA precursors whose sequences define the target spectrum of these silencing pathways. The Drosophila Heterochromatin Protein 1 (HP1) variant Rhino permits transcription of PIWI-interacting RNA (piRNA) precursors within transposon-rich heterochromatic loci in germline cells. Current models propose that Rhino's specific chromatin occupancy at piRNA source loci is determined by histone marks and maternally inherited piRNAs, but also imply the existence of other, undiscovered specificity cues. Here, we identify a member of the diverse family of zinc finger associated domain (ZAD)-C2H2 zinc finger proteins, Kipferl, as critical Rhino cofactor in ovaries. By binding to guanosine-rich DNA motifs and interacting with the Rhino chromodomain, Kipferl recruits Rhino to specific loci and stabilizes it on chromatin. In kipferl mutant flies, Rhino is lost from most of its target chromatin loci and instead accumulates on pericentromeric Satellite arrays, resulting in decreased levels of transposon targeting piRNAs and impaired fertility. Our findings reveal that DNA sequence, in addition to the H3K9me3 mark, determines the identity of piRNA source loci and provide insight into how Rhino might be caught in the crossfire of genetic conflicts.


The genes within our DNA encode the essentials of our body plan and how each task in the body is achieved. However, our genome also contains many repetitive regions of DNA that do not encode functional genes. Some of these regions are genetic parasites known as transposons that try to multiply and spread around the DNA of their host. To prevent transposon DNA from interfering with the way the body operates, humans and other animals have evolved elaborate defense mechanisms to identify transposons and prevent them from multiplying. In one such mechanism, known as the piRNA pathway, the host makes small molecules known as piRNAs that have sequences complementary to those of transposons, and act as guides to silence the transposons. The instructions to make these piRNAs are stored in the form of transposon fragments in dedicated regions of host DNA called piRNA clusters. These clusters thereby act as genetic memory, allowing the host to recognize and silence specific transposons in other locations within the host's genome. In fruit flies, a protein called Rhino binds to piRNA clusters that are densely packed to allow piRNAs to be made. However, it remained unclear how Rhino is able to identify and bind to piRNA clusters, but not to other similarly densely packed regions of DNA. Baumgartner et al. used a combination of genetic, genomic, and imaging approaches to study how Rhino finds its way in the fruit fly genome. They found that another protein called Kipferl interacts with Rhino and is required for Rhino to bind to nearly all piRNA clusters. Since Kipferl can by itself bind to the sequences that Rhino needs to find, the results suggest that Kipferl acts to recruit and initiate Rhino binding within densely packed piRNA clusters. Further experiments found that, in flies lacking Kipferl, Rhino binds to regions of DNA called Satellite repeats, hinting that these selfish sequences may compete for Rhino for their own benefit. The finding that Kipferl and Rhino work together to define the memory system of the piRNA pathway strongly advances our understanding of how a sequence-specific defense system based on small RNAs can be established.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Elementos Transponibles de ADN/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Guanosina/metabolismo , Precursores del ARN/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Dedos de Zinc
4.
Nat Struct Mol Biol ; 29(2): 130-142, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35173350

RESUMEN

Nuclear Argonaute proteins, guided by small RNAs, mediate sequence-specific heterochromatin formation. The molecular principles that link Argonaute-small RNA complexes to cellular heterochromatin effectors on binding to nascent target RNAs are poorly understood. Here, we explain the mechanism by which the PIWI-interacting RNA (piRNA) pathway connects to the heterochromatin machinery in Drosophila. We find that Panoramix, a corepressor required for piRNA-guided heterochromatin formation, is SUMOylated on chromatin in a Piwi-dependent manner. SUMOylation, together with an amphipathic LxxLL motif in Panoramix's intrinsically disordered repressor domain, are necessary and sufficient to recruit Small ovary (Sov), a multi-zinc-finger protein essential for general heterochromatin formation and viability. Structure-guided mutations that eliminate the Panoramix-Sov interaction or that prevent SUMOylation of Panoramix uncouple Sov from the piRNA pathway, resulting in viable but sterile flies in which Piwi-targeted transposons are derepressed. Thus, Piwi engages the heterochromatin machinery specifically at transposon loci by coupling recruitment of a corepressor to nascent transcripts with its SUMOylation.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Secuencias de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Sitios de Unión/genética , Cromatina/genética , Cromatina/metabolismo , Elementos Transponibles de ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Silenciador del Gen , Genes de Insecto , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Moleculares , Mutación , Proteínas Nucleares/química , Células Madre Oogoniales/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas de Unión al ARN/química , Sumoilación/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
5.
Nucleic Acids Res ; 48(14): e79, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32496553

RESUMEN

Diverse classes of silencing small (s)RNAs operate via ARGONAUTE-family proteins within RNA-induced-silencing-complexes (RISCs). Here, we have streamlined various embodiments of a Q-sepharose-based RISC-purification method that relies on conserved biochemical properties of all ARGONAUTEs. We show, in multiple benchmarking assays, that the resulting 15-min benchtop extraction procedure allows simultaneous purification of all known classes of RISC-associated sRNAs without prior knowledge of the samples-intrinsic ARGONAUTE repertoires. Optimized under a user-friendly format, the method - coined 'TraPR' for Trans-kingdom, rapid, affordable Purification of RISCs - operates irrespectively of the organism, tissue, cell type or bio-fluid of interest, and scales to minute amounts of input material. The method is highly suited for direct profiling of silencing sRNAs, with TraPR-generated sequencing libraries outperforming those obtained via gold-standard procedures that require immunoprecipitations and/or lengthy polyacrylamide gel-selection. TraPR considerably improves the quality and consistency of silencing sRNA sample preparation including from notoriously difficult-to-handle tissues/bio-fluids such as starchy storage roots or mammalian plasma, and regardless of RNA contaminants or RNA degradation status of samples.


Asunto(s)
Proteínas Argonautas/metabolismo , Cromatografía Liquida/métodos , ARN Interferente Pequeño/aislamiento & purificación , Complejo Silenciador Inducido por ARN/química , Animales , Resinas de Intercambio Aniónico , Proteínas Argonautas/aislamiento & purificación , Línea Celular Tumoral , Biblioteca de Genes , Ratones , Ratones Endogámicos C57BL , Polinucleótido 5'-Hidroxil-Quinasa , ARN de Hongos/aislamiento & purificación , ARN de Helminto/aislamiento & purificación , ARN Neoplásico/aislamiento & purificación , ARN de Planta/aislamiento & purificación , ARN Protozoario/aislamiento & purificación , ARN Interferente Pequeño/sangre , ARN Interferente Pequeño/metabolismo , Sefarosa , Dióxido de Silicio , Ultracentrifugación
6.
Nat Struct Mol Biol ; 26(8): 720-731, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31384064

RESUMEN

The PIWI-interacting RNA (piRNA) pathway protects genome integrity in part through establishing repressive heterochromatin at transposon loci. Silencing requires piRNA-guided targeting of nuclear PIWI proteins to nascent transposon transcripts, yet the subsequent molecular events are not understood. Here, we identify SFiNX (silencing factor interacting nuclear export variant), an interdependent protein complex required for Piwi-mediated cotranscriptional silencing in Drosophila. SFiNX consists of Nxf2-Nxt1, a gonad-specific variant of the heterodimeric messenger RNA export receptor Nxf1-Nxt1 and the Piwi-associated protein Panoramix. SFiNX mutant flies are sterile and exhibit transposon derepression because piRNA-loaded Piwi is unable to establish heterochromatin. Within SFiNX, Panoramix recruits heterochromatin effectors, while the RNA binding protein Nxf2 licenses cotranscriptional silencing. Our data reveal how Nxf2 might have evolved from an RNA transport receptor into a cotranscriptional silencing factor. Thus, NXF variants, which are abundant in metazoans, can have diverse molecular functions and might have been coopted for host genome defense more broadly.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Heterocromatina/metabolismo , Proteínas Nucleares/fisiología , Proteínas de Transporte Nucleocitoplasmático/fisiología , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/fisiología , Secuencia de Aminoácidos , Animales , Proteínas Argonautas/fisiología , Sitios de Unión , Cristalografía por Rayos X , Elementos Transponibles de ADN/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Regulación de la Expresión Génica , Silenciador del Gen , Genoma de los Insectos , Modelos Moleculares , Complejos Multiproteicos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/genética , Conformación Proteica , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transcripción Genética
7.
Nature ; 539(7630): 588-592, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27851737

RESUMEN

Small regulatory RNAs guide Argonaute (Ago) proteins in a sequence-specific manner to their targets and therefore have important roles in eukaryotic gene silencing. Of the three small RNA classes, microRNAs and short interfering RNAs are processed from double-stranded precursors into defined 21- to 23-mers by Dicer, an endoribonuclease with intrinsic ruler function. PIWI-interacting RNAs (piRNAs)-the 22-30-nt-long guides for PIWI-clade Ago proteins that silence transposons in animal gonads-are generated independently of Dicer from single-stranded precursors. piRNA 5' ends are defined either by Zucchini, the Drosophila homologue of mitoPLD-a mitochondria-anchored endonuclease, or by piRNA-guided target cleavage. Formation of piRNA 3' ends is poorly understood. Here we report that two genetically and mechanistically distinct pathways generate piRNA 3' ends in Drosophila. The initiating nucleases are either Zucchini or the PIWI-clade proteins Aubergine (Aub) or Ago3. While Zucchini-mediated cleavages directly define mature piRNA 3' ends, Aub/Ago3-mediated cleavages liberate pre-piRNAs that require extensive resection by the 3'-to-5' exoribonuclease Nibbler (Drosophila homologue of Mut-7). The relative activity of these two pathways dictates the extent to which piRNAs are directed to cytoplasmic or nuclear PIWI-clade proteins and thereby sets the balance between post-transcriptional and transcriptional silencing. Notably, loss of both Zucchini and Nibbler reveals a minimal, Argonaute-driven small RNA biogenesis pathway in which piRNA 5' and 3' ends are directly produced by closely spaced Aub/Ago3-mediated cleavage events. Our data reveal a coherent model for piRNA biogenesis, and should aid the mechanistic dissection of the processes that govern piRNA 3'-end formation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética , Animales , Proteínas Argonautas/metabolismo , Citoplasma/metabolismo , Proteínas de Drosophila/deficiencia , Drosophila melanogaster/enzimología , Drosophila melanogaster/metabolismo , Endorribonucleasas/deficiencia , Endorribonucleasas/metabolismo , Exorribonucleasas/deficiencia , Exorribonucleasas/metabolismo , Femenino , Proteínas Nucleares/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Procesamiento Postranscripcional del ARN , ARN Guía de Kinetoplastida/metabolismo , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Transcripción Genética
8.
Science ; 348(6236): 812-817, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25977553

RESUMEN

In animal gonads, PIWI-clade Argonaute proteins repress transposons sequence-specifically via bound Piwi-interacting RNAs (piRNAs). These are processed from single-stranded precursor RNAs by largely unknown mechanisms. Here we show that primary piRNA biogenesis is a 3'-directed and phased process that, in the Drosophila germ line, is initiated by secondary piRNA-guided transcript cleavage. Phasing results from consecutive endonucleolytic cleavages catalyzed by Zucchini, implying coupled formation of 3' and 5' ends of flanking piRNAs. Unexpectedly, Zucchini also participates in 3' end formation of secondary piRNAs. Its function can, however, be bypassed by downstream piRNA-guided precursor cleavages coupled to exonucleolytic trimming. Our data uncover an evolutionarily conserved piRNA biogenesis mechanism in which Zucchini plays a central role in defining piRNA 5' and 3' ends.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Endorribonucleasas/metabolismo , División del ARN , ARN Guía de Kinetoplastida/metabolismo , ARN Interferente Pequeño/metabolismo , Transcripción Genética , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endorribonucleasas/genética , Evolución Molecular , Femenino , Células Germinativas/enzimología , Masculino , Ratones , Ovario/enzimología , ARN Interferente Pequeño/biosíntesis , Proteínas de Unión al ARN/genética , Testículo/enzimología , Uridina/metabolismo
9.
Dev Cell ; 32(6): 765-71, 2015 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-25805138

RESUMEN

Huang et al. (2013) recently reported that chromatin immunoprecipitation sequencing (ChIP-seq) reveals the genome-wide sites of occupancy by Piwi, a piRNA-guided Argonaute protein central to transposon silencing in Drosophila. Their study also reported that loss of Piwi causes widespread rewiring of transcriptional patterns, as evidenced by changes in RNA polymerase II occupancy across the genome. Here we reanalyze their data and report that the underlying deep-sequencing dataset does not support the authors' genome-wide conclusions.


Asunto(s)
Proteínas Argonautas/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , ARN Polimerasa II/genética , Animales , Secuencia de Bases , Sitios de Unión/genética , Inmunoprecipitación de Cromatina , Drosophila melanogaster , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Metiltransferasas , Interferencia de ARN , ARN Interferente Pequeño/genética , Análisis de Secuencia de ADN
10.
Genes Dev ; 28(16): 1772-85, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25081352

RESUMEN

Splicing of pre-mRNAs results in the deposition of the exon junction complex (EJC) upstream of exon-exon boundaries. The EJC plays crucial post-splicing roles in export, translation, localization, and nonsense-mediated decay of mRNAs. It also aids faithful splicing of pre-mRNAs containing large introns, albeit via an unknown mechanism. Here, we show that the core EJC plus the accessory factors RnpS1 and Acinus aid in definition and efficient splicing of neighboring introns. This requires prior deposition of the EJC in close proximity to either an upstream or downstream splicing event. If present in isolation, EJC-dependent introns are splicing-defective also in wild-type cells. Interestingly, the most affected intron belongs to the piwi locus, which explains the reported transposon desilencing in EJC-depleted Drosophila ovaries. Based on a transcriptome-wide analysis, we propose that the dependency of splicing on the EJC is exploited as a means to control the temporal order of splicing events.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Intrones/genética , Empalme del ARN/fisiología , Animales , Proteínas Argonautas/genética , Células Cultivadas , Elementos Transponibles de ADN/genética , Drosophila/clasificación , Proteínas de Drosophila/genética , Femenino , Regulación de la Expresión Génica , Silenciador del Gen , Ovario/metabolismo , Precursores del ARN/metabolismo
11.
Cell ; 157(6): 1364-1379, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24906153

RESUMEN

Argonaute proteins of the PIWI clade are central to transposon silencing in animal gonads. Their target specificity is defined by 23-30 nt PIWI interacting RNAs (piRNAs), which mostly originate from discrete genomic loci termed piRNA clusters. Here, we show that a complex composed of Rhino, Deadlock, and Cutoff (RDC) defines dual-strand piRNA clusters genome-wide in Drosophila ovaries. The RDC is anchored to H3K9me3-marked chromatin in part via Rhino's chromodomain. Depletion of Piwi results in loss of the RDC and small RNAs at a subset of piRNA clusters, demonstrating a feedback loop between Piwi and piRNA source loci. Intriguingly, profiles of RNA polymerase II occupancy, nascent transcription, and steady-state RNA levels reveal that the RDC licenses noncanonical transcription of dual-strand piRNA clusters. Likely, this process involves 5' end protection of nascent RNAs and suppression of transcription termination. Our data provide key insight into the regulation and evolution of piRNA clusters.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , Animales , Femenino , Estudio de Asociación del Genoma Completo , Ovario/metabolismo , ARN Polimerasa II/metabolismo , ARN Interferente Pequeño/metabolismo , Terminación de la Transcripción Genética
12.
Mol Cell ; 50(5): 762-77, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23665231

RESUMEN

The piRNA (PIWI-interacting RNA) pathway is a small RNA silencing system that acts in animal gonads and protects the genome against the deleterious influence of transposons. A major bottleneck in the field is the lack of comprehensive knowledge of the factors and molecular processes that constitute this pathway. We conducted an RNAi screen in Drosophila and identified ~50 genes that strongly impact the ovarian somatic piRNA pathway. Many identified genes fall into functional categories that indicate essential roles for mitochondrial metabolism, RNA export, the nuclear pore, transcription elongation, and chromatin regulation in the pathway. Follow-up studies on two factors demonstrate that components acting at distinct hierarchical levels of the pathway were identified. Finally, we define CG2183/Gasz as an essential primary piRNA biogenesis factor in somatic and germline cells. Based on the similarities between insect and vertebrate piRNA pathways, our results have far-reaching implications for the understanding of this conserved genome defense system.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Ovario/fisiología , ARN Interferente Pequeño/genética , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Femenino , Regulación de la Expresión Génica , Mitocondrias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN , Sensibilidad y Especificidad
13.
EMBO J ; 30(19): 3977-93, 2011 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-21863019

RESUMEN

PIWI proteins and their bound PIWI-interacting RNAs (piRNAs) form the core of a gonad-specific small RNA silencing pathway that protects the animal genome against the deleterious activity of transposable elements. Recent studies linked the piRNA pathway to TUDOR biology as TUDOR domains of various proteins bind symmetrically methylated Arginine residues in PIWI proteins. We systematically analysed the Drosophila TUDOR protein family and identified four previously not characterized TUDOR domain-containing proteins (CG4771, CG14303, CG11133 and CG31755) as essential piRNA pathway factors. We characterized CG4771 (Vreteno) in detail and demonstrate a critical role for this protein in primary piRNA biogenesis. Vreteno physically and/or genetically interacts with the primary pathway components Piwi, Armitage, Yb and Zucchini. Vreteno also interacts with the Tdrd12 orthologues CG11133 (Brother of Yb) and CG31755 (Sister of Yb), which are essential for the primary piRNA pathway in the germline and probably replace the function of the related but soma-specific factor Yb.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Alelos , Animales , Cruzamientos Genéticos , Elementos Transponibles de ADN , Drosophila melanogaster , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ovario/metabolismo , Estructura Terciaria de Proteína , ARN/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética
14.
Nat Methods ; 8(5): 405-7, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21460824

RESUMEN

Existing transgenic RNAi resources in Drosophila melanogaster based on long double-stranded hairpin RNAs are powerful tools for functional studies, but they are ineffective in gene knockdown during oogenesis, an important model system for the study of many biological questions. We show that shRNAs, modeled on an endogenous microRNA, are extremely effective at silencing gene expression during oogenesis. We also describe our progress toward building a genome-wide shRNA resource.


Asunto(s)
Drosophila melanogaster/genética , Genoma de los Insectos , Interferencia de ARN , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Cartilla de ADN/genética , Femenino , Técnicas de Silenciamiento del Gen , Técnicas Genéticas , Vectores Genéticos , MicroARNs/genética , Oogénesis/genética , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...